Quantum Differentiation and Chain Maps of Bimodule Complexes
نویسندگان
چکیده
We consider a finite group acting on a vector space and the corresponding skew group algebra generated by the group and the symmetric algebra of the space. This skew group algebra illuminates the resulting orbifold and serves as a replacement for the ring of invariant polynomials, especially in the eyes of cohomology. One analyzes the Hochschild cohomology of the skew group algebra using isomorphisms which convert between resolutions. We present an explicit chain map from the bar resolution to the Koszul resolution of the symmetric algebra which induces various isomorphisms on Hochschild homology and cohomology, some of which have appeared in the literature before. This approach unifies previous results on homology and cohomology of both the symmetric algebra and skew group algebra. We determine induced combinatorial cochain maps which invoke quantum differentiation (expressed by Demazure-BGG operators).
منابع مشابه
Constacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملQuantum random walks and vanishing of the second Hochschild cohomology
Given a conditionally completely positive map L on a unital ∗-algebra A, we find an interesting connection between the second Hochschild cohomology of A with coefficients in the bimodule EL = Ba(A⊕M) of adjointable maps, where M is the GNS bimodule of L, and the possibility of constructing a quantum random walk (in the sense of [2, 11, 13, 16]) corresponding to L.
متن کاملComplexes of $C$-projective modules
Inspired by a recent work of Buchweitz and Flenner, we show that, for a semidualizing bimodule $C$, $C$--perfect complexes have the ability to detect when a ring is strongly regular.It is shown that there exists a class of modules which admit minimal resolutions of $C$--projective modules.
متن کاملDuality and Normal Parts of Operator Modules
For an operator bimodule X over von Neumann algebras A ⊆ B(H) and B ⊆ B(K), the space of all completely bounded A, B-bimodule maps from X into B(K,H), is the bimodule dual of X. Basic duality theory is developed with a particular attention to the Haagerup tensor product over von Neumann algebras. To X a normal operator bimodule Xn is associated so that completely bounded A, B-bimodule maps from...
متن کاملHigh-Level Quantum Chemical Calculations of Ozone-Water Complexes
The structural and energetic characteristics of O3–H2O complexes have been investigated by means of B3LYP, MP2, MP4(SDTQ), CCSD(T) and QCISD(T) methods in conjunction with the AUG-cc-pVDZ and AUG-cc-pVTZ basis sets. Six conformers were found for the O3–H2O complex. Two different intermolecular interactions were expected to participate in the formation of complexes, namely conventional O∙∙∙H hyd...
متن کامل